Kullback-Leibler Penalized Sparse Discriminant Analysis for Event-Related Potential Classification
نویسندگان
چکیده
A brain computer interface (BCI) is a system which provides direct communication between the mind of a person and the outside world by using only brain activity (EEG). The event-related potential (ERP)-based BCI problem consists of a binary pattern recognition. Linear discriminant analysis (LDA) is widely used to solve this type of classification problems, but it fails when the number of features is large relative to the number of observations. In this work ∗[email protected] 1 ar X iv :1 60 8. 06 86 3v 1 [ cs .C V ] 2 4 A ug 2 01 6 we propose a penalized version of the sparse discriminant analysis (SDA), called Kullback-Leibler penalized sparse discriminant analysis (KLSDA). This method inherits both the discriminative feature selection and classification properties of SDA and it also improves SDA performance through the addition of Kullback-Leibler class discrepancy information. The KLSDA method is design to automatically select the optimal regularization parameters. Numerical experiments with two real ERP-EEG datasets show that this new method outperforms standard SDA.
منابع مشابه
Generalized sparse discriminant analysis for event-related potential classification
A brain computer interface (BCI) is a system which provides direct communication between the mind of a person and the outside world by using only brain activity (EEG). The event-related potential (ERP)-based BCI problem consists of a binary pattern recognition. Linear discriminant analysis (LDA) is widely used to solve this type of classification problems, but it fails when the number of featur...
متن کاملComparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil
In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...
متن کاملTexture Classification Using Discriminant Wavelet Packet Subbands
This paper addresses the issue of selecting features from a given wavelet packet subband decomposition that are most useful for texture classification in an image. A functional measure based on Kullback-Leibler distance is proposed as a way to select most discriminant subbands. Experimental results show a superior performance in terms of classification error rates.
متن کاملStatistical models: Conventional, penalized and hierarchical likelihood
We give an overview of statistical models and likelihood, together with two of its variants: penalized and hierarchical likelihood. The Kullback-Leibler divergence is referred to repeatedly in the literature, for defining the misspecification risk of a model and for grounding the likelihood and the likelihood cross-validation, which can be used for choosing weights in penalized likelihood. Fami...
متن کاملEEG feature descriptors and discriminant analysis under Riemannian Manifold perspective
This paper presents a framework to classify motor imagery in the context of multi-class Brain Computer Interface based on electroencephalography (EEG). Covariance matrices are extracted as the EEG signal descriptors, and different dissimilarity metrics on the manifold of Symmetric Positive Definite (SPD) matrices are investigated to classify these covariance descriptors. Specifically, we compar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1608.06863 شماره
صفحات -
تاریخ انتشار 2016